Skip to main content

Struktur Atom - Universitas jambi


STRUKTUR ATOM
Joni Kurniawan¹
¹Mahasiswa Universitas Jambi, Fakultas Pertanian, Progam studi Agroekoteknologi.
Email : Mynotes.life@gmail.com

1.      DEFINISI ATOM
Atom” kata ini berasal dari bahasa yunani atomos yang berarti tidak dapat dipotong. Sesuai pengertian tersebut,Atom-atom adalah partikel penyusun semua benda yang berukuran sangat kecil. Di dalam atom juga terdapat sub-atom, yaitu partikel penyusun atom yang ukurannya lebih kecil. Sulit bagi kita untuk membayangkan seberapa kecil atom ini, satu titik yang ada di akhir kalimat ini saja memiliki panjang sekitar 20 juta atom. Setiap atom memiliki inti, yang terdiri dari proton dan neutron, serta elektron yang bergerak cepat di sekitar inti. Elektron-elektron ini terdapat pada tingkatan energi yang berbeda-beda, yang disebut kulit, tiap kulit memiliki jumlah batas untuk elektron, apabila elektron di kulit pertama sudah memenuhi batas, maka elektron akan memenuhi kulit kedua dan seterusnya. Berdasarkan penjelasan di atas, elektron,neutron dan proton merupakan bagian terkecil dari atom, namun para ilmuan modern berpendapat bahwa proton dan neutron tersusun atas partikel-partikel yang lebih kecil lagi yang disebut kuark.
2. SEJARAH ATOM
Konsep bahwa materi terdiri dari satuan-satuan terpisah yang tidak dapat dibagi lagi menjadi satuan yang lebih kecil telah ada selama satu milenium. Namun, pemikiran tersebut masihlah bersifat abstrak dan filosofis, daripada berdasarkan pengamatan empiris dan eksperimen. Secara filosofis, deskripsi sifat-sifat atom bervariasi tergantung pada budaya dan aliran filosofi tersebut, dan seringkali pula mengandung unsur-unsur spiritual di dalamnya. Walaupun demikian, pemikiran dasar mengenai atom dapat diterima oleh para ilmuwan ribuan tahun kemudian, karena ia secara elegan dapat menjelaskan penemuan-penemuan baru pada bidang kimia.
Rujukan paling awal mengenai konsep atom dapat ditilik kembali kepada zaman India kuno pada tahun 800 sebelum masehi, yang dijelaskan dalam naskah filsafat Jainisme sebagai anu dan paramanu. Aliran mazhab Nyaya dan Vaisesika mengembangkan teori yang menjelaskan bagaimana atom-atom bergabung menjadi benda-benda yang lebih kompleks. Satu abad kemudian muncul rujukan mengenai atom di dunia Barat oleh Leukippos, yang kemudian oleh muridnya Demokritos pandangan tersebut disistematiskan. Kira-kira pada tahun 450 SM, Demokritos menciptakan istilah atomos (bahasa Yunani: ἄτομος), yang berarti "tidak dapat dipotong" ataupun "tidak dapat dibagi-bagi lagi". Teori Demokritos mengenai atom bukanlah usaha untuk menjabarkan suatu fenomena fisis secara rinci, melainkan suatu filosofi yang mencoba untuk memberikan jawaban atas perubahan-perubahan yang terjadi pada alam. Filosofi serupa juga terjadi di India, namun demikian ilmu pengetahuan modern memutuskan untuk menggunakan istilah "atom" yang dicetuskan oleh Demokritos.
Kemajuan lebih jauh pada pemahaman mengenai atom dimulai dengan berkembangnya ilmu kimia. Pada tahun 1661, Robert Boyle mempublikasikan buku The Sceptical Chymist yang berargumen bahwa materi-materi di dunia ini terdiri dari berbagai kombinasi "corpuscules", yaitu atom-atom yang berbeda. Hal ini berbeda dengan pandangan klasik yang berpendapat bahwa materi terdiri dari unsur-unsur udara, tanah, api, dan air. Pada tahun 1789, istilah element (unsur) didefinisikan oleh seorang bangsawan dan peneliti Perancis, Antoine Lavoisier, sebagai bahan dasar yang tidak dapat dibagibagi lebih jauh lagi dengan menggunakan metode-metode kimia.
Berbagai atom dan molekul yang digambarkan pada buku John Dalton, A New System of Chemical Philosophy (1808). Pada tahun 1803, John Dalton menggunakan konsep atom untuk menjelaskan mengapa unsur-unsur selalu bereaksi dalam perbandingan yang bulat dan tetap, serta mengapa gas-gas tertentu lebih larut dalam air dibandingkan dengan gas-gas lainnya. Ia mengajukan pendapat bahwa setiap unsur mengandung atom-atom tunggal unik, dan atom-atom tersebut selanjutnya dapat bergabung untuk membentuk senyawasenyawa kimia. Teori partikel ini kemudian dikonfirmasikan lebih jauh lagi pada tahun 1827, yaitu ketika botaniwan Robert Brown menggunakan mikroskop untuk mengamati debu-debu yang mengambang di atas air dan menemukan bahwa debu-debu tersebut bergerak secara acak. Fenomena ini kemudian dikenal sebagai "Gerak Brown". Pada tahun 1877, J. Desaulx mengajukanpendapat bahwa fenomena ini disebabkan oleh gerak termal molekul air, dan pada tahun 1905 Albert Einstein membuat analisis matematika terhadap gerak ini. Fisikawan Perancis Jean Perrin kemudian menggunakan hasil kerja Einstein untuk menentukan massa dan dimensi atom secara eksperimen, yang kemudian dengan pasti menjadi verifikasi atas teori atom Dalton.
Berdasarkan hasil penelitiannya terhadap sinar katoda, pada tahun 1897 J. J. Thomson menemukan elektron dan sifatsifat subatomiknya. Hal ini meruntuhkan konsep atom sebagaisatuan yang tidak dapat dibagi-bagi lagi. Thomson percaya bahwa elektron-elektron terdistribusi secara merata di seluruh atom, dan muatan-muatannya diseimbangkan oleh keberadaan lautan muatan positif (model puding prem). Namun pada tahun 1909, para peneliti di bawah arahan Ernest Rutherford menembakkan ion helium ke lembaran tipis emas, dan menemukan bahwa sebagian kecil ion tersebut dipantulkan dengan sudut pantulan yang lebih tajam dari yang apa yang diprediksikan oleh teori Thomson. Rutherford kemudian mengajukan pendapat bahwa muatan positif suatu atom dan kebanyakan massanya terkonsentrasi pada inti atom, dengan elektron yang mengitari inti atom seperti planet mengitari matahari. Muatan positif ion helium yang melewati inti padat ini haruslah dipantulkan dengan sudut pantulan yang lebih tajam. Pada tahun 1913, ketika bereksperimen dengan hasil proses peluruhan radioaktif, Frederick Soddy menemukan bahwa terdapat lebih dari satu jenis atom pada setiap posisi tabel periodik. Istilah isotop kemudian diciptakan oleh Margaret Todd sebagai nama yang tepat untuk atom-atom yang berbeda namun merupakan satu unsur yang sama. J.J. Thomson selanjutnyamenemukan teknik untuk memisahkan jenis-jenis atom tersebut melalui hasil kerjanya pada gas yang terionisasi. Model atom hidrogen Bohr yang menunjukkan loncatan elektron antara orbit-orbit tetap dan memancarkan energi foton dengan frekuensi tertentu.
Sementara itu, pada tahun 1913 fisikawan Niels Bohr mengkaji ulang model atom Rutherford dan mengajukan pendapat bahwa elektron-elektron terletak pada orbit-orbit yang terkuantisasi serta dapat meloncat dari satu orbit ke orbit lainnya, meskipun demikian tidak dapat dengan bebas berputar spiral ke dalam maupun keluar dalam keadaan transisi. Suatu elektron haruslah menyerap ataupun memancarkan sejumlah energi tertentu untuk dapat melakukan transisi antara orbit-orbit yang tetap ini. Apabila cahaya dari materi yang dipanaskan memancar melalui prisma, ia menghasilkan suatu spektrum multiwarna. Penampakan garis-garis spektrum tertentu ini berhasil dijelaskan oleh teori transisi orbital ini. Ikatan kimia antar atom kemudian pada tahun 1916 dijelaskan oleh Gilbert Newton Lewis sebagai interaksi antara elektron-elektron atom tersebut. Atas adanya keteraturan sifatsifaT kimiawi dalam tabel periode kimia, kimiawan Amerika Irving Langmuir tahun 1919 berpendapat bahwa hal ini dapat dijelaskan apabila elektron-elektron pada sebuah atom saling berhubungan atau berkumpul dalam bentuk-bentuk tertentu. Sekelompok elektron diperkirakan menduduki satu set kelopak elektron di sekitar inti atom. Percobaan Stern-Gerlach pada tahun 1922 memberikan bukti lebih jauh mengenai sifat-sifat kuantum atom. Ketika seberkas atom perak ditembakkan melalui medan magnet, berkas tersebut terpisah-pisah sesuai dengan arah momentum sudut atom (spin). Oleh karena arah spin adalah acak, berkas ini diharapkan menyebar menjadi satu garis. Namun pada kenyataannya berkas ini terbagi menjadi dua bagian, tergantung dari apakah spin atom tersebut berorientasi ke atas ataupun ke bawah.
Pada tahun 1926, dengan menggunakan pemikiran Louis de Broglie bahwa partikel berperilaku seperti gelombang, Erwin Schrodinger mengembangkan suatu model atom matematis yang menggambarkan elektron sebagai gelombang tiga dimensi daripada sebagai titik-titik partikel. Konsekuensi penggunaan bentuk gelombang untuk menjelaskan elektron ini adalah bahwa adalah tidak mungkin untuk secara matematis menghitung posisi dan momentum partikel secara bersamaan. Hal ini kemudian dikenal sebagai prinsip ketidakpastian, yang dirumuskan oleh Werner Heisenberg pada 1926. Menurut konsep ini, untuk setiap pengukuran suatu posisi, seseorang hanya bisa mendapatkan kisaran nilai-nilai probabilitas momentum, demikian pula sebaliknya. Walaupun model ini sulit untuk divisualisasikan, ia dapat dengan baik menjelaskan sifat-sifat atom yang terpantau yang sebelumnya tidak dapat dijelaskan oleh teori mana pun. Oleh sebab itu, model atom yang menggambarkan elektron mengitari inti atom seperti planet mengitari matahari digugurkan dan digantikan oleh model orbital atom di sekitar inti di mana elektron paling berkemungkinan berada.
Perkembangan pada spektrometri massa mengijinkan dilakukannya pengukuran massa atom secara tepat. Peralatan spektrometer ini menggunakan magnet untuk membelokkan trayektori berkas ion, dan banyaknya defleksi ditentukan dengan rasio massa atom terhadap muatannya. Kimiawan Francis William Aston menggunakan peralatan ini untuk menunjukkan bahwa isotop mempunyai massa yang berbeda. Perbedaan massa antar isotop ini berupa bilangan bulat, dan ia disebut sebagai kaidah bilangan bulat. Penjelasan pada perbedaan massa isotop ini berhasil dipecahkan setelah ditemukannya neutron, suatu partikel bermuatan netral dengan massa yang hampir sama dengan proton, yaitu oleh James Chadwick pada tahun 1932. Isotop kemudian dijelaskan sebagai unsur dengan jumlah proton yang sama, namun memiliki jumlah neutron yang berbeda dalam inti atom.
Pada tahun 1950-an, perkembangan pemercepat partikel dan detektor partikel mengijinkan para ilmuwan mempelajari dampak-dampak dari atom yang bergerak dengan energi yang tinggi. Neutron dan proton kemudian diketahui sebagai hadron, yaitu komposit partikel-partikel kecil yang disebut sebagai kuark. Model-model standar fisika nuklir kemudian dikembangkan untuk menjelaskan sifat-sifat inti atom dalam hal interaksi partikel subatom ini. Sekitar tahun 1985, Steven Chu dkk. di Bell Labs mengembangkan sebuah teknik untuk menurunkan temperatur atom menggunakan laser. Pada tahun yang sama, sekelompok ilmuwan yang diketuai oleh William D. Phillips berhasil memerangkap atom natrium dalam perangkap magnet. Claude Cohen-Tannoudji kemudian menggabungkan kedua teknik tersebut untuk mendinginkan sejumlah kecil atom sampai beberapa mikrokelvin. Hal ini mengijinkan ilmuwan mempelajari atom dengan presisi yang sangat tinggi, yang pada akhirnya membawa para ilmuwan menemukan kondensasi Bose-Einstein. Dalam sejarahnya, sebuah atom tunggal sangatlah kecil untuk digunakan dalam aplikasi ilmiah. Namun baru-baru ini, berbagai peranti yang menggunakan sebuah atom tunggal logam yang dihubungkan dengan ligan-ligan organik (transistor elektron tunggal) telah dibuat. Berbagai penelitian telah dilakukan untuk memerangkap dan memperlambat laju atom menggunakan pendinginan laser untuk mendapatkan pemahaman yang lebih baik mengenai sifat-sifat atom

B. Struktur Atom
Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton yang bermuatan positif dan neutron yang bermuatan netral (terkecuali pada Hidrogen-1 yang tidak memiliki neutron). Elektron-elektron pada sebuah atom terikat pada inti atom oleh gaya elektromagnetik. Demikian pula sekumpulan atom dapat berikatan satu sama lainnya membentuk sebuah molekul. Atom yang mengandung jumlah proton dan elektron yang sama bersifat netral, sedangkan yang mengandung jumlah proton dan elektron yang berbeda bersifat positif atau negatif dan merupakan ion.
Atom dikelompokkan berdasarkan jumlah proton dan neutron pada inti atom tersebut. Jumlah proton pada atom menentukan unsur kimia atom tersebut, dan jumlah neutron menentukan isotop unsur tersebut.
Atom hanya dapat dipantau menggunakan peralatan khusus seperti mikroskop penerowongan payaran. Lebih dari 99,9% massa atom berpusat pada inti atom, dengan proton dan neutron yang bermassa hampir sama. Setiap unsur paling tidak memiliki satu isotop dengan inti yang tidak stabil yang dapat mengalami peluruhan radioaktif. Hal ini dapat mengakibatkan transmutasi yang mengubah jumlah proton dan neutron pada inti. Elektron yang terikat pada atom mengandung sejumlah aras energi, ataupun orbital, yang stabil dan dapat mengalami transisi di antara aras tersebut dengan menyerap ataupun memancarkan foton yang sesuai dengan perbedaan energi antara aras. Elektron pada atom menentukan sifat-sifat kimiawi sebuah unsur dan mempengaruhi sifat-sifat magnetis atom tersebut. (Beiser Arthur,1987).
C. PARTIKEL PENYUSUN STRUKTUR ATOM
a.      Elektron
Elektron adalah partikel subatomik yang bermuatan negatif. Seperti semua partikel, elektron dapat berperilaku seperti gelombang. Pernyataan De Broglie yang menyatakan bahwa partikel dapat bersifat sebagai gelombang telah menginspirasi Schrodinger untuk menyusun model atomnya dengan memperhatikan sifat elektron bukan hanya sebagai partikel tetapi juga sebagai gelombang, artinya dia menggunakan dualisme sifat elektron.
Perilaku elektron seperti gelombang dideskripsikan menggunakan fungsi matematika yang disebut orbital elektron. Tiap-tiap orbital atom memiliki satu set bilangan kuantumnya sendiri, yaitu energi, momentum sudut, dan proyeksi momentum sudut. Tiap orbital hanya dapat diduduki oleh dua elektron, yang harus berbeda dalam bilangan kuantum spinnya.
Untuk menentukan kedudukan suatu elektron di dalam atom digunakan 4 bilangan kuantum:

Untuk menentukan kedudukan suatu elektron dalam atom, digunakan 4 bilangan kuantum.
1) Bilangan Kuantum Utama (n), yaitu menyatakan nomor kulit.
a. Elektron pada kulit ke-1 memiliki harga n = 1
b. Elektron pada kulit ke-2 memiliki harga n = 2
c.  Elektron pada kulit ke-3 memiliki harga n = 3
2) Bilangan Kuantum Azimuth (l), yaitu menyatakan nomor subkulit.
a. Elektron pada subkulit s memiliki harga l = 0
b. Elektron pada subkulit p memiliki harga l = 1
c.  Elektron pada subkulit d memiliki harga l = 2
d. Elektron pada subkulit f memiliki harga l = 3
3) Bilangan Kuantun Magnetik (m), yaitu menyatakan nomor orbital.
Subkulit
Harga masing-masing orbital
s ( l = 0 )
p ( l = 1 )
d ( l = 2 )
f ( l = 3 )
0
-1, 0, +1
-2, -1, 0, +1, +2
-3, -2, -1, 0, +1, +2, +3
Harga m berkisar antara – l sampai + l.
4) Bilangan Kuantum Spin (s), yaitu menyatakan arah rotasi elektron.
s = +  ↑↓ s = -
Elektron bergerak di sekitar sumbu melewati pusatnya. Kedua arah spin menunjukkan harga yang mungkin untuk bilangan kuantum.
Elektron-elektron pada kulit yang sama memiliki harga n yang sama.
Elektron-elektron pada subkulit yang sama memiliki harga n dan l yang sama.
Elektron-elektron pada orbital yang sama memiliki harga n, l, dan m yang sama dan harga s yang berbeda.
b. Proton
Oleh karena elektron merupakan penyusun atom yang bermuatan negatip, berarti materi harus mengandung penyusun lain yang bermuatan positip. Hal ini dibuktikan oleh Goldstein (1886) dan Wien yang juga disebut sinar terusan atau sinar kanal. Partikel positip ini terjadi karena tabrakan antara partkel gas dalam tabung dengan elektron berenergi besar yang bergerak dari katoda ke anoda dalam tabung gas. Dari berbagai eksperimen diperoleh dua perbedaan terpentingmdari pengukuran e/m terhadap elektron.
a. Perbandingan muatan/massa untuk ion positip berbeda, jika gas dalam tabung berbeda. Pada massa pengukuran e/m elektron diperoleh harga yang sama apapun jenis gas yang terdapat di dalamnya.
b. Harga muatan/massa untuk ion positip jauh lebih kecil dari harga untuk elektron. Fakta ini menunjukkan bahwa ion positip terbentuk dari gas yang terdapat dalam tabung dan massanya
lebih besar dari massa elektron.
Diperoleh hasil, bahwa harga e/m untuk sinar terusan hidrogen lebih besar dari e/m untuk elektron. Dari sini dipostulatkan, bahwa H+ adalah suatu partikel dasar atom yang besar muatannya sama dengan muatan elektron tetapi tandanya berlawanan.
C. Neutron
Neutron atau netron adalah partikel subatomik yang tidak bermuatan (netral) dan memiliki massa 940 MeV/c² (1.6749 × 10-27 kg, sedikit lebih berat dari proton. Putarannya adalah ½. Inti atom dari kebanyakan atom (semua kecuali isotop Hidrogen yang paling umum, yang terdiri dari sebuah proton) terdiri dari proton dan neutron. Di luar inti atom, neutron tidak stabil dan memiliki waktu paruh sekitar 15 menit (881.5±1.5 detik), meluluh dengan memancarkan elektron dan antineutrino untuk menjadi proton. Metode peluruhan yang sama (peluruhan beta) terjadi di beberapa inti atom. Partikel-partikel dalam inti atom biasanya adalah neutron dan proton, yang berubah menjadi satu dan lainnya dengan pemancaran dan penyerapan pion.
Sebuah neutron diklasifikasikan sebagai baryon dan terdiri dari dua quark bawah dan satu quark atas. Persamaan Neutron antibendanya adalah antineutron. Perbedaan utama dari neutron dengan partikel subatomik lainnya adalah mereka tidak bermuatan. Sifat netron ini membuat penemuannya lebih terbelakang, dan sangat menembus, membuatnya sulit diamati secara langsung dan membuatnya sangat pentin sebagai agen dalam perubahan nuklir. Penelitian yang dilakukan Rutherford selain sukses mendapatkan beberapa hasil yang memuaskan juga mendapatkan kejanggalan yaitu massa inti atom unsur selalu lebih besar daripada massa proton di dalam inti atom. Rutherford menduga bahwa terdapat partikel lain di dalam inti atom yang tidak bermuatan karena atom bermuatan positif disebabkan adanya proton yang bermuatan positif. Adanya partikel lain di dalam inti atom yang tidak bermuatan dibuktikan oleh James Chadwick pada tahun 1932. Chadwick melakukan penelitian dengan menembak logam berilium menggunakan sinar alfa. Hasil penelitian menunjukkan bahwa suatu partikel yang tak bermuatan dilepaskan ketika logam berilium ditembak dengan sinar alfa dan partikel ini disebut sebagai neutron. Neutron tak bermuatan dan bermassa 1 sma (pembulatan).
d. Inti Atom ( Nukleus)
Inti atom Setelah penemuan proton dan elektron, Ernest Rutherford melakukan penelitian penembakan lempang tipis emas. Jika atom terdiri dari partikel yang bermuatan positif dan negatif maka sinar alfa yang ditembakkan seharusnya tidak ada yang diteruskan/ menembus lempeng sehingga mincullah istilah inti atom. Ernest Rutherford dibantu oleh Hans Geiger dan Ernest Marsden (1911) menemukan konsep inti atom didukung oleh penemuan sinar X oleh WC. Rontgen (1895) dan penemuan zat radioaktif (1896). Percobaan Rutherford dapat digambarkan sebagai berikut. Hasil percobaan ini membuat Rutherford menyatakan hipotesisnya bahwa atom tersusun dari inti atom yang bermuatan positif dan dikelilingi elektron yang bermuatan negatif, sehingga atom bersifat netral. Massa inti atom tidak seimbang dengan massa proton yang ada dalam inti atom, sehingga dapt diprediksi bahwa ada partikel lain dalam inti atom.

D. KONFIGURASI ELEKTRON
Dalam setiap atom telah tersedia orbital-orbital, akan tetapi belum tentu semua orbital ini terisi penuh. Pengisian elektron dalam orbital-orbital memenuhi beberapa peraturan.antara lain:
1) Prinsip Aufbau : elektron-elektron mulai mengisi orbital dengan tingkat energi terendah dan seterusnya.
Orbital yang memenuhi tingkat energi yang paling rendah adalah 1s dilanjutkan dengan 2s, 2p, 3s, 3p, dan seterusnya dan untuk mempermudah dibuat diagram sebagai berikut:
Contoh pengisian elektron-elektron dalam orbital beberapa unsur:
Atom H : mempunyai 1 elektron, konfigurasinya 1s1
Atom C : mempunyai 6 elektron, konfigurasinya 1s2 2s2 2p2
Atom K : mempunyai 19 elektron, konfigurasinya 1s2 2s2 2p6 3S2 3p6 4s1.
2) Prinsip Pauli : tidak mungkin di dalam atom terdapat 2 elektron dengan keempat bilangan kuantum yang sama.
Hal ini berarti, bila ada dua elektron yang mempunyai bilangan kuantum utama, azimuth dan magnetik yang sama, maka bilangan kuantum spinnya harus berlawanan.
3) Prinsip Hund : cara pengisian elektron dalam orbital pada suatu sub kulit ialah bahwa elektron-elektron tidak membentuk pasangan elektron sebelum masing-masing orbital terisi dengan sebuah elektron.
Contoh:
 Atom C dengan nomor atom 6, berarti memiliki 6 elektron dan cara Pengisian orbitalnya adalah:
Berdasarkan prinsip Hund, maka 1 elektron dari lintasan 2s akan berpindah ke lintasan 2pz, sehingga sekarang ada 4 elektron yang tidak berpasangan. Oleh karena itu agar semua orbitalnya penuh, maka atom karbon berikatan dengan unsur yang dapat memberikan 4 elektron. Sehingga di alam terdapat senyawa CH4 atau CCl4, tetapi tidak terdapat senyawa CCl3 atau CCl5.
E. JARI-JARI ORBIT
Tiap elektron dapat bergerak mengelilingi inti atom hanya pada orbit-orbit tertentu yang di izinkan, hal tersebut di sebabkan karena elektron dalam waktu yang bersamaan berlaku sebagai partikel dan juga sebagai gelombang.
F.   LEVEL ENERGI
Tiap elektron membutuhkan energi untuk dapat pindah dari orbit yang satu ke orbit yang lain. Orbit pertama(yang paling dekat dengan inti)menyatakan level energi pertama,orbit ke dua adalah level energi ke-2 dan seterusnya.makin tinggi level energi,makin besar energi elektron dan makin besar orbitnya.
Jika terdapat energi dari luar seperti panas,cahaya dan radiasi lain membom atom, maka hal ini akan mengangkat elektron ke level yang lebih tinggi,dalam kondisi ini atom berada di keadaan eksitasi.
Dimana kondisi ini tidak akan berlangsung lama karena elektron akan kembali ke level energi semula dengan melepaskan energi yang di terimanya dalam bentuk panas,cahaya atau radiasi lain.
G.STRUKTUR MOLEKUL
Molekul didefinisikan sebagai sekelompok atom (paling sedikit dua) yang saling berikatan dengan sangat kuat (kovalen) dalam susunan tertentu dan bermuatan netral serta cukup stabil.
H. SEJARAH MOLEKUL
Walaupun keberadaan molekul telah diterima oleh banyak kimiawan sejak awal abad ke-19, terdapat beberapa pertentangan di antara para fisikawan seperti Mach, Boltzmann, Maxwell, dan Gibbs, yang memandang molekul hanyalah sebagai sebuah konsepsi matematis. Karya Perrin pada gerak Brown (1911) dianggap sebagai bukti akhir yang meyakinkan para ilmuwan akan keberadaan molekul.
Definisi molekul pula telah berubah seiring dengan berkembangnya pengetahuan atas struktur molekul. Definisi paling awal mendefinisikan molekul sebagai partikel terkecil bahan-bahan kimia yang masih mempertahankan komposisi dan sifat-sifat kimiawinya. Definisi ini sering kali tidak dapat diterapkan karena banyak bahan materi seperti bebatuan, garam, dan logam tersusun atas jaringan-jaringan atom dan ion yang terikat secara kimiawi dan tidak tersusun atas molekul-molekul diskret.
I. UKURAN MOLEKUL
Kebanyakan molekul sangatlah kecil untuk dapat dilihat dengan mata telanjang. Kekecualian terdapat pada DNA yang dapat mencapai ukuran makroskopis. Molekul terkecil adalah hidrogen diatomik (H2), dengan keseluruhan molekul sekitar dua kali panjang ikatnya (0.74 Å). Satu molekul tunggal biasanya tidak dapat dipantau menggunakan cahaya, namun dapat dideteksi menggunakan mikroskop gaya atom. Molekul dengan ukuran yang sangat besar disebut sebagai makromolekul atau supermolekul. Jari-jari molekul efektif merupakan ukuran molekul yang terpantau dalam larutan.
J. RUMUS MOLEKUL
Rumus empiris sebuah senyawa menunjukkan nilai perbandingan paling sederhana unsur-unsur penyusun senyawa tersebut. Sebagai contohnya, air selalu memiliki nilai perbandingan atom hidrogen berbanding oksigen 2:1. Etanol pula selalu memiliki nilai perbandingan antara karbon, hidrogen, dan oksigen 2:6:1. Namun, rumus ini tidak menunjukkan bentuk ataupun susunan atom dalam molekul tersebut. Contohnya, dimetil eter juga memiliki nilai perbandingan yang sama dengan etanol. Molekul dengan jumlah atom penyusun yang sama namun berbeda susunannya disebut sebagai isomer.
Perlu diperhatikan bahwa rumus empiris hanya memberikan nilai perbandingan atom-atom penyusun suatu molekul dan tidak memberikan nilai jumlah atom yang sebenarnya. Rumus molekul menggambarkan jumlah atom penyusun molekul secara tepat. Contohnya, asetilena memiliki rumus molekuler C2H2, namun rumus empirisnya adalah CH.
Massa suatu molekul dapat dihitung dari rumus kimianya. Sering kali massa molekul diekspresikan dalam satuan massa atom yang setara dengan 1/12 massa atom karbon-12.


K. GEOMETRI MOLEKUL
Molekul memiliki geometri yang berbentuk tetap dalam keadaan kesetimbangan. Panjang ikat dan sudut ikatan akan terus bergetar melalui gerak vibrasi dan rotasi. Rumus kimia dan struktur molekul merupakan dua faktor penting yang menentukan sifat-sifat suatu senyawa. Senyawa isomer memiliki rumus kimia yang sama, namun sifat-sifat yang berbeda oleh karena strukturnya yang berbeda.






















DAFTAR PUSTAKA

Brady, James and Humiston, 1986. General Chemistry 4/E Principle and Structure, SI Version. New  York: John Wiley & Sons.
Briggs, JGR, 2002. Chemistry Insights. Singapore: Pearson Education Pte Ltd.
Briggs, JGR, 2002. Science in Focus Chemistry for GCE ‘O’ Level. Singapore Pearson Education Pte Ltd.
Keenan, C. 1999. Kimia Untuk Universitas. Jakarta : Erlangga.
Ompu, Marlan. 2002. Kimia SPMB. Bandung : Yrama Widya.
Petruci, Ralph. dan H Suminar, 1989. Kimia dasar Prinsip dan Terapan Modern Jilid 3 , Edisi keempat. Jakarta: Penerbit Erlangga.
Petruci, Ralph. dan H Suminar, 1989. Kimia Dasar Prinsip dan Terapan Modern Jilid 1 , Edisi keempat. Jakarta: Penerbit Erlangga.
Smoot, Robert C. et al. , 1989. Merrill Chemistry. New York: Glencoe Macmillan/ Mcgraw-Hill.
Syukri, S. 1999. Kimia Dasar . Bandung : ITB.



Comments

Popular posts from this blog

LAPORAN PRAKTIKUM FISIOLOGI TUMBUHAN PERTUMBUHAN KURVA JAGUNG

LAPORAN FISIOLOGI TUMBUHAN KURVA PERTUMBUHAN JAGUNG Disusun untuk memenuhi tugas mata kuliah Fisiologi Tumbuhan                         DISUSUN OLEH :   JONI KURNIAWAN                             D1A014082       PROGAM STUDI AGROEKOTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS JAMBI 2016   1.      Judul Praktikum Kurva pertumbuhan jagung 2.      Prinsip teori   Suatu sifat fisiologi yang hanya dimiliki khusus oleh tumbuhan ialah kemampuannya untuk menggunakan zat-karbon dari udara untuk diubah menjadi bahan organik serta diasimilasikan di dalam tubuh tanaman. Peristiwa ini hanya berlangsung cukup cahaya dan oleh karena itu maka asimilasi zat-karbon disebut juga fotosintesis. Lengkapnya adalah bahwa fotosintesis atau asimilasi zat-karbon itu suatu proses di mana zat-zat anorganik H 2 O dan CO 2  oleh klorofil diubah menjadi zat organik karbohidrat dengan pertolon

makalah penanganan pasca panen tanaman pangan padi- universitas jambi

MAKALAH “PENANGAN PASCA PANEN DAN PEMASARAN TANAMAN PANGAN” DISUSUN OLEH : 1.          JONI KURNIAWAN                       D1A014082 2.          M. IQBAL KURNIAWAN              D1A014076 3.          ARIF TRIYONO                              D1A014103 4.          DHAMAYANTI SHINTA               D1A014101 5.          SAVITRI KHARUNNISA              D1A014113 6.          ESTER E. SIMANJUTAK             D1A014088 7.          IMAM WAHYUDI                           D1A014093 8.          AGNEYSA FARDISKA                 D1A014082 9.          M. MAULANA                                 D1A014099 10.      EKA ISMI FARIDA                                    D1A014104 PRODI AGROEKOTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS JAMBI 2014 KATA PENGANTAR Segala puji bagi Allah SWT yang telah memberikan nikmat serta hidayah-Nya terutama nikmat kesempatan dan kesehatan sehingga penulis dapat menyelesaikan makalah dengan baik dan benar, serta tepat pad

LAPORAN PRAKTIKUM ILMU HAMA TANAMAN KACANG PANJANG

BAB I PENDAHULUAN   1.1      Latar Belakang Kacang panjang ( Vigna sinensis (L.))  merupakan komoditas hortikultura yang banyak dibudidayakan oleh petani. Beberapa kendala dalam meningkatkan produksi kacang panjang yaitu masih kurangnya minat petani untuk menanam kacang panjang sebagai tanaman utama, produktivitas masih rendah, dan harga yang fluktuatif. Selain kendala tersebut, kendala yang langsung dialami petani yaitu adanya serangan organisme pengganggu tanaman (OPT). Badan Pusat Statistik (2012) menyatakan bahwa produktivitas kacang panjang pada tahun 2010 sebesar 489,449 ton, tetapi pada tahun 2011 produktivitas kacang panjang menurun menjadi 458,307 ton. Penurunan ini disebabkan karena adanya serangan hama dan penyakit. Hama penting pada kacang panjang adalah penggerek polong Maruca testulalis (Lepidoptera: Pyralidae). Hama yang dilaporkan menyerang kacang panjang antara lain, tungau merah Tetranychus bimaculatus , kutu kebul Bemisia tabaci , penggerek p